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A modulated structure can be depicted as a section through a four-dimensional periodic structure. 
In the latter, each atom is represented by a string continuing endlessly in the overall direction (e4) of the 
normal to R3, R3 being the hyperplane of the section. The strings have periodic bends or densifica- 
tions for displacive and substitutional modulation respectively. Formulae for structure factors can be 
derived from this picture with little effort. The pseudo-symmetry of modulated structures can be de- 
scribed conveniently in this picture. Each four-dimensional space group to which the four-dimen- 
sional structure can belong is a possible MS3 (modulated three-dimensional structure) group of pseudo- 
symmetry, and is called an MS3 space group. It is shown that MS3 point groups are reducible in the 
form Q®e. 1, where 1 is the unit 2x2  matrix, and e= _+1. A list is presented of these 31 groups 
written as black-and-white or colourless groups of three-dimensional symmetry. The MS3 space groups 
are discussed briefly. As an example of the peculiar differentiations caused by e4 being a unique direc- 
tion, the 23 MS2 space groups are listed explicitly. Finally, it is shown that MS groups are essential 
for the description of MS symmetry, because very often the latter cannot be represented completely 
and unambiguously by the normal space group of an approximate superstructure. 

1. Main reflexions and satellites 

Certain crystals (cf. §5) have diffraction patterns con- 
sisting of sharp spots which cannot all be indexed in 
the usual way. Instead, four indices index h~ and four 
reciprocal base vectors b~ (i= 1 . . .  4) have to be intro- 
duced so that the diffraction vector of each spot can be 
written as 

hlbl + h2b2 -t- hab 3 + h4b4 (1) 

with integer hl, h2,h3 and h4. 
Since the four vectors b~ occur in three-dimensional 

space, one may write: 

b4 = klbl + k2b2 + kab3 (2) 

and the abnormal character of the pattern can be ex- 
pressed by saying that at least one of the k~ is irrational. 
Translated into physics, this means that one k~ depends 
on, say, the temperature in a continuous manner. That, 
and not the measured k~ value, the rationality of which 
is undecidable, is the criterion which differentiates 
these crystals from superstructures. For an example 
see Fig. 1. 

The diffraction image of these crystals shows a very 
conspicuous three-dimensional reciprocal lattice among 
the points (1). We shall call it B and characterize it by 
h 4 = 0 through a suitable choice of the base vectors b~, 
b 2 and b3. This lattice has the following properties. 

(I) It has the same point-group symmetry as the 
entire diffraction image in reciprocal space, both geo- 
metrically and with regard to the intensities occuring 
in the latter and in B respectively. 

(lI) Together with the density it leads to an integer 
number of formula weights per unit cell. 

(III) There is often a transition to another phase 
which retains only the reflexions belonging to this lat- 

tice, whereas the other reflexions - the 'satellites', 
h a v i n g  h4::~ 0 - disappear at the transition point. 

(IV) It is, among all three-dimensional lattices which 
could be chosen from the points (1), the one which has 
by far the biggest total diffraction intensity of its points. 

We shall call the reflexions belonging to this lattice 
main reflexions. 

The existence of a three-dimensional sublattice with 
the above properties can be explained on the basis of 
so-called modulated structures (§5). From a practical 
point of view, the properties ( I ) . . .  (IV) could be used 
as criteria to find the lattice B. So far, however, main 
reflexions have invariably been so strong compared to 
satellites - at least at low angles - that there has never 
been any doubt about the lattice B. 

Within the lattice B, there are the usual conventions 
for choosing base vectors bl, b2 and b3. The vector b 4 is 
not unique either, but it is natural to choose it within 
the first Brillouin z6ne of the B lattice. 

2. The problem 

The reciprocal lattice of main reflexions obviously cor- 
responds to very dominating features of the structure. 
Consider the conjugate lattice ,4 in real space, with 
base vectors al, a2, a3 reciprocal to b~, b2 and b3. The 
,4-lattice vectors cannot all be vectors of translation 
symmetry, or there would be no satellites. The prom- 
inence of the reciprocal lattice B nevertheless points 
to a pseudo-translation character of the ,4-lattice vec- 
tors, or at least of part of them, and the first goal is to 
specify that character. 

Being devoid of three-dimensional periodicity, our 
crystal has of course lost all claims to belong to a three- 
dimensional space group. The second question then 
becomes: What kind of symmetry - if any - can be 
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assigned to these structures? Finally: To what extent is 
the result applicable to the symmetry of superstructures, @32 
or vice versa? 

It needs hardly be said that the reason for solving 
these problems is the need to establish a foundation on 
which the analysis of the structures involved can be 
based. Just as for normal crystals, full knowledge of k3 
the symmetry is indispensable for modulated structures 
to be solved, t°"29 

3. The four-dimensional structure 

The difficulty with four base vectors is that there is no 
set of vectors reciprocal to it in three-dimensional 
space. As set out in the previous section, the lattice A 
reciprocal to B may be constructed - we shall call this 
the pseudo- trans la t ion  latt ice - but that leaves b4 to be 
dealt with. The way this may be done can be visualized 
if one looks at a layer of reflexions containing the direc- 
tion of b4, a s  in Fig. 2. 

Such pictures strongly suggest that the rows of 
satellites do not lie in the plane of the figure, but that 
the latter constitutes a view in perspective of parallel 
rows which run in a direction oblique to the paper. Of 
course it is precisely the non-rationality of the k~ in (2) 
which allows one to uncouple b4 in this way from the 
main reflections. 

We now extend this concept to the full reciprocal 
space instead of just one layer. The satellites are con- 
sidered as projections onto three-dimensional space 
R3 of lattice points of a four-dimensional lattice B' in 
four-dimensional space R4. Assuming the projection to 
be at right angles to R 3 ,  w e  find that the lattice B' can 
be based on vectors b~, three of which lie in R3: 

b~=bl b2=b2 ba---b 3 b4=b4+e  4 (3) 

where e 4 is a vector perpendicular to R3 (see Fig. 3). 
We shall take e 4 as the unit vector in that direction. 

The advantage gained at the cost of an extra dimen- 
sion is that we are now able to find a lattice A '  in R4, 
reciprocal to B'. Moreover, a very useful four-dimen- 
sionally periodic structure can be based upon this lat- 
tice as follows: 

Looking at Fig. 3, we observe that the points T are 
peaks in the Fourier transform of the actual electron 
density 4 in R3. We now assign the diffraction amplitude 
F of each point T to the corresponding point T '  in 
reciprocal R4 space. Then we perform the Fourier sum- 
mation in R4 to obtain the function 4', which is periodic 
in four coordinates in R4, and which has the translation 
lattice A'. Now what is the relation between 4 and 4'? 

From the construction of 4' we have (calling ~-,, the 
Fourier transform in n dimensions). 

~-3(4) = projection of ~-4(4') along e 4 . 

Therefore 4 = section of 4', obtained by intersecting 4' 
with the space (hyperplane) R3 perpendicular to e4. 

The situation may be visualized in three instead of 
four dimensions: Imagine a normal crystal (density 4') 
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Fig. 1. The components k~ vs. k3 of the satellite vector b4 for 
Na2COz, for a range of temperatures as shown in d e g r e e s  
Celcius. 
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Fig. 2. Retigram of the layer h3l of Na2COa, taken with Cu Ke 
radiation. 
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Fig. 3. Main reflexions (R) and satellites (T) in R3 as a projec- 
tion of points T' of a four-dimensional lattice. 
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intersected by a plane with irrational indices. The elec- 
tron density Q in the plane as a function of two coor- 
dinates is non-periodic. Its Fourier transform is ob- 
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Fig. 4. Representation of structures by density O' in R4. Real 
atoms are indicated by bulging parts of the line representing 
R3. (a) Normal crystal. The top figure is a plot of the density 
in a cross section. (b) Structure with substitutional modula- 
tion. (c) Structure with displacive modulation. 

tained from that of 0' by the usual routine: project all 
points in reciprocal space along the plane normal onto 
the plane. Because the intensity always vanishes for 
sufficiently high indices, this projection remains a set 
of discrete points, which can be indexed by an expres- 
sion like (1) with one term less. Therefore it is the exact 
two-dimensional analogue of the situation from which 
we started in § 1. 

4. The pseudo-translation lattice 

The set of vectors a~ reciprocal to b~ in R4(that is, ful- 
filling the conditions a~b~= f lu) expressed in the set at 
reciprocal to b~ in R3, and in e4, is: 

a~--a i -kie4 a i=a2-k2e4 

a~ = a3-  k3e4 a4 = e4. (4) 

This is verified as follows" 

a~b4=(al-kle4) .  (b4+e4)=ai . b 4 - k i  

= al(klbl + k2b2 + k3b3) - kl  : 0 

a~b~ = (al -- kle4), ba = aiba = 0 

a~bi = (ai - kle4) • bi = aibi = 1, etc.  

The pseudo-translation character of the lattice A can 
now be interpreted more precisely. Each of its lattice 
vectors is the projection of a row of lattice points of A', 
projected along e4 onto Ra (e .g.  al--a~+kle4). The 
lattice vectors of A' in R 4 are true translation vectors of 
the function 0', of which the actual density 0 is a sec- 
tion as discussed above. A sketch of the situation re- 
duced by two dimensions is given in Fig. 4. According- 
ly, the pseudo-translation lattice A in R3 is the projec- 
tion of the true translation lattice A' in R4. 

In this respect, the relation between A and A' is 
similar to that between the lattice B of main reflexions 
and the four-dimensional reciprocal lattice B', which 
yields B when projected along b~. The important dif- 
ference is that B is part of B', whereas A '  has no three- 
dimensional sublattice in R3. On the other hand, e 4 is 
directed along a lattice vector of A', but not of B'.  

Let us call the coordinates in R4 with respect to the 
base a~ . . .  a4: x ~ ( i =  1 . . .  4). No primes are needed to 
distinguish the first three of these coordinates from 
those in R3 with respect to al, a2,a3; they are identical 
since A is the projection of A '  along a4. The hyperplane 
R3, perpendicular to e4 = a~, is given by 

e4. (x la l  + x2a2 + Xaaa + x4a4) = 0 

or, because of (4), 

- -  k l x l  - k 2 x 2  - k a x 3  + x 4  = O . (5) 

It is convenient to introduce a new coordinate t in R4 

t = - k i x l  - k2x2 - kax3 + x4 (6) 

so that R3 is given by t=0 .  
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5. Modulated crystal structures 

So far, we have discussed in a rather abstract way a 
certain class of diffraction patterns, namely those with 
'irrational' satellites. We shall show now that such 
patterns, as well as the properties of main reflexions 
mentioned in §2, can be explained by assuming the 
structure to be 'modulated' according to the following 
definition. 

Modulated structures can be obtained from normal 
structures by modifying some parameter p of an atom 
at (~,22,23) (coordinates measured from the origin in 
a fixed unit cell) in such a way that it becomes a periodic 
function (not necessarily harmonic), 

p(kl£l + kzx2 -a t- k3.Y3) 

with unit period. This function can be different for dif- 
ferent atoms in the unit cell, but the constants k~ are 
the same for all atoms. The parameter p can be a frac- 
tional coordinate (displacive modulation), a magnetic 
moment (magnetic modulation), or an average oc- 
cupational fraction in mixed or non-stoichiometric 
crystals (substitutional modulation). Several param- 
eters can be modulated simultaneously as well. Such a 
crystal is a section through a four-dimensional structure 
of the type discussed before, provided each atom is 
represented in R4 by a string in the overall direction of 
e4. In each section t = constant the string appears as an 
atom again. The value of its parameter p has to be 

p(t + k121 + kaX2 -Jr- kaxa) 

in order to yield the above modulated structure in Ra 
(t=0). According to equation (6) this is identical to 
p(x4), x4 referring to the point in R4 defined by the given 
values of t and 2i. 

Different types of modulation will now be discussed 
in some detail depending on the function p. Firstly, 
there is the trivial case in which p does not depend on 
x4 at all [Fig. 4(a)]. There is no real modulation, and 
indeed the section t = 0 is seen to be perfectly periodic. 

A real case of modulation is that in which the atomic 
form factor of the/zth atom is given by a periodic func- 
tion 

f .=f . (x4)  or, in Ra, fu=f.(k ,x~ + k2x2 + kaxa) (7) 

but the fractional coordinates of each atom are fixed as 
in Fig. 4(b). 

It has been shown to occur as substitutional modula- 
tion [e.g. by Jamieson, de Fontaine & Abrahams (1969) 
for Nd2(MoO4)a; by Korekawa & Jagodzinski (1967) 
for labradorite]. The value off,(x4) must be understood 
as an average over a statistical distribution of two kinds 
of atoms in all unit cells in which the/,tth atom has the 
same value of x4; for instance, all cells connected by 
q2a2-} - q3a3 (q2,qa integer) if the vector b 4 is parallel to 
bl, while b 2 and ba are at right angles to bl. 

Helical magnetic structures too, can be described by 
equation (7). Here f,(x4) is not an average; it is the 
actual factor by which the neutron scattering contribu- 

tion is multiplied because of the local spin direction, 
and it is the same for all atoms with equal x4. 

Finally, there is the case of displacive modulation as 
depicted in Fig. 4(c). Here it is assumed that the scat- 
tering factor is a constant for each atom, but the posi- 
tion is a periodic function of x4 (cf. next section). 

This kind of modulation has sometimes been as- 
sumed to occur as a corollary of substitutional modula- 
tion. Recently, however, several A2BXa and A2BX4 
compounds have been found to possess very pronoun- 
ced satellites in their diffraction patterns (Dubbeldam 
& de Wolff, 1969; van den Berg, Tuinstra & Warczew- 
ski, 1972; Jacobi, 1973]. In all these cases, only dis- 
placive modulation is possible. 

The properties of the lattice B of main reflexions 
mentioned in § 1 can be readily explained on the basis 
of the above types of modulation. They are all of them 
connected with the unique role of the a4 base vector of 
the A' lattice, because this entails an equally unique 
role of the reciprocal lattice B conjugate to a4. The 
uniqueness of a~ consists in that 'atoms' can be dis- 
tinguished in the function Q' as continuous strings, with 
periodic bends and/or densifications, but all of them 
continuing endlessly in the overall direction of a~, and 
each separated from all others. 

The symmetry property (I) of B will be discussed in 
§7. Property (II), the integer unit cell content of the 
pseudo-translation lattice A, is a direct consequence of 
the string structure. The phase transitions [property 
(III)] are readily understood as transitions of ~' from 
the types Fig. 4(b) or 4(c) to that of Fig. 4(a), making 
real translations from pseudotranslations. Property 
(IV), the conspicuously high intensities of main reflex- 
ions, can be understood if one realizes that their sum 
is proportional to the height of the origin peak in a 
Patterson map of the Q' structure projected along a4. 
The string-like character of the 'atoms' in Q' leads to 
high maxima in that projected density Qav (not to be 
confused with •, which is a section). This average struc- 
ture is important in all attempts at structure analysis 
because it contains recognizable atom peaks. 

In any other projection of Q', the density of a string 
is very much more smeared out. Only for exceptional 
displacements is the validity of property IV question- 
able. This could occur, e.g. if one were to describe 
helical-molecular crystals, such as ~,-sulphur (Tuinstra, 
1967) as modulated structures. 

6. Structure factor for modulated structures 

As an example of the usefulness of the four-dimensional 
description, we shall derive the general formula for the 
structure factor. The formula for substitutional modu- 
lation as defined by equation (7) with h4 = m: 

F(hl, hz, ha, m)= ~ exp {2rci(hlX~ +hzx~ +hax~)}. 
12 

S x f,(x4) • exp (2zrimx4)dx4 
0 

(8) 
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can be derived straightforwardly, but the displacive 
type requires careful treatment. 

The position of an atom P can be defined convenient- 
ly with respect to some average set of coordinates 
xl, x2, xa so that for one 'string' 

xl = 21 + u~(z) x2= 22 + u2(z) x3= x3 + u3(z) (9) 

where ux, u~ and u3 are functions of the x4 coordinate z 
of the undisplaced atom Po at the same value of t (Fig. 
5). 

From equation (6) we find: 

~" --  x 4 ( e 0 )  = t + k~2~ + k 2 x  2 + ka2a (10) 
and also 

x4(P) = t + klXl + k2x2 + kaxa 
= z + klul + k2u2 + kaua • (11) 

We are now ready to perform the Fourier transforma- 
tion of Q'. As a matter of fact, the contribution of an 
interval dz of the string to the Fourier coefficient 
hx,h2,ha, rn is 

fd ' r .  exp {2nifhlx~+h2x2+haxa+mx4)}. (12) 

Again, we have replaced the satellite index h4 by the 
more currently used symbol m. 

Substitution of (9) and (11) in (12) yields 

f d z .  exp 2ni{ht21 + h222 -Jr" ha)?a + (hl + mkx)ul 

+ (h2 + mk2)u2 + (h3 + mka)u3 + mr}.  

Performing the integration over z, and recalling that 
only the u~ depend upon z, we find the structure factor 
upon summing over the 'string index'/z 

F(hDh2,h3,m)= ~ f u  exp 2ni(hx2~ +h22~ +h32~) 

x fl0 dr exp 2hi {~l (hi+mk~)u~ + m r  }. (13) 

x4 

I 

.--3;;" i 

1 

Fig.  5. C o o r d i n a t e s  used  in the  de r iva t ion  o f  the  s t ruc tu re  
f ac to r  for  displacive m o d u l a t i o n .  

From this general equation, the well-known results 
for, e.g., sinusoidal displacements ui(z), can be readily 
obtained. If 

u~ = U'~ sin ( 2 n r - e ) ,  

the integral in (13) equals 
3 

exp {im(e + n)}. Jm[2n ~ (h, + mk,)V~] . 
1 

7. Pseudo symmetry 

Because of the unique r61e (explained in §5) of the 
vector a;, the direction of this vector must be invariant 
for all symmetry operations of the four-dimensional 
'crystal' given by Q'. Hence with respect to an ortho- 
normal basis with e4 as the fourth vector, all operations 
of the point group assume the reduced form: 

0) 
0 e (14) 

with P a 3 x 3 matrix and e = + 1. 
Let us now look at the symmetry of diffraction inten- 

sities in reciprocal space. In R4, apart from the inver- 
sion centre created by Friedel's law, these intensities 
will have the point-group symmetry consisting of the 
operations (14). The main reflexions, situated on lattice 
B in the subspace Ra, are imaged onto themselves by 
each P', because R3 is the hyperplane perpendicular to 
the invariant direction of a'4. In Ra, only the minor P of 
P '  is effective. It follows that main reflexions have the 
matrices P plus inversion, if lacking, as their point 
group elements. The satellites can therefore only be 
permuted among themselves by each P, hence they 
have the same point group. Then the same holds for 
the entire diffraction image in R3, which explains 
property (I) of § 1. 

The actual crystal, though it has no three-dimension- 
al periodicity, can have true symmetry elements and 
even true translations, In some cases, the ensuing 
group can be an adequate description of the symmetry 
in R 4. For instance, if the latter is generated by a 
mirror hyperplane (1 ) 

- 1  
1 

1 (15) 

the actual crystal has a true mirror plane (and true 
translations perpendicular to it). An additional glide 
component of (15) is, however, enough to suppress the 
mirror plane. Also, if binary axes are added perpen- 
dicular to the mirror hyperplane, they have a chance 
zero to appear in any finite volume of Ra. The same is 
true for the centres of symmetry, generated by (15) and 
the axes in R4. Therefore, the true symmetry of Q in Ra - 
if any - can also be a very poor residue of the full sym- 
metry of 0' in R4. 

A C 30A - 7 
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Accordingly, just as we have established a pseudo. 
translation character for the relation between atoms 
like S and S' in Fig. 4, we define pseudo-symmetry 
relations between atoms: such relations hold if the cor- 
responding strings in 0' have a - true - symmetry 
relation in R4. In this way every symmetry operation of 
Q' in R4 can be interpreted as a pseudo-symmetry 
relation of the atoms in R3. All these relations taken 
together can be called the 'pseudo-symmetry' of the 
modulated crystal, in the sense that they simplify its 
description - j u s t  as true crystal symmetry, they reduce 
the number of structure parameters. They also yield 
simple relations between symmetry-related structure 
factors. 

Thus we find that point groups of (3 + 1)-reducible 
matrices like (14) may correspond to types of pseudo- 
symmetry of modulated crystals. According to a de- 
finition given by Janssen (1969), each (3+ 1)-reducible 
space group in R4 corresponds to a generalized mag- 
netic symmetry (GM group). In the following sec- 
tions, we shall show that a much less simple relation 
exists between these space groups and 'MS-groups' .  

8. Modulated 3-dimensional structure (MS3) point groups 

We started from the condition that at least one k~ in (2) 
is irrational. As stated earlier, this means that: 

(a) R3 does not contain a three-dimensional sub- 
lattice of A'. 

(b) e4 is not a lattice vector direction of B' .  
Statements (a) and (b) are equivalent. According to a 

proposition by Janssen (1969, proposition 2), the vector 
representation of the four-dimensional point group has 
to be reducible as follows" 

0 ~ 0 (16) 
0 t  

with Q a 2 × 2 matrix and e=  + 1, in order to satisfy 
condition (a). 

Thus only point groups with a '(2 + 2  × 1)-reducible' 
vector representation can describe the symmetry of 
modulated structures. Instead of following the proof 
of the above generalized proposition, one may obtain 
this result more directly by using statement (b) in order 
to construct a point-group eigenvector different from 
e 4 • 

Introduce P~ and P'_ as symbols for point group 
elements (14) with, respectively, ~= + 1 and ~ = -  1. 
Then the B '  lattice vector b"" 

b" = (~P+ - ~P'_)b~ 

is an eigenvector of all the operators (14), because 
multiplication with any of them either leaves S P  ~ and 
Y P "_ the same or interchanges them. Now since b~e4 
= 1, it follows from equation (14) that b'a'e4 is the 
order of the point group and therefore non-zero; so b" 
is not perpendicular to e 4. On the other hand b" cannot 
have the direction of e4 because of condition (b). There- 

fore, for each point-group element, e4 and b" are dif- 
ferent and non-perpendicular eigenvectors, so the cor- 
responding eigenvalues must be the same: there exists 
an invariant plane containing e4=a4, as expressed by 
the form (16). 

The point groups satisfying (16) can easily be enumer- 
ated since they correspond to the 31 colourless, grey 
or black-and-white plane point groups. It is much more 
convenient, however, to express them as colourless or 
black-and-white three-dimensional point groups (Table 
1) as suggested by the matrix (14). These symbols at 
once yield the point group of the average structure by 
leaving out the primes, if any. They correspond to the 
30 geometrical crystal classes belonging to systems 
I . . .  VII in Table II of the report by Fast & Janssen 
(1968) and to systems 1, 2, 3, 4, 7, 8 and 9 in Table 1 of 
the paper by Wondratschek, Billow & Neubilser (1971). 
For the first class ot system III or 3, two different MS 
point groups are obtained, generated by 

(1111)andbY(1 1 1 1)  
respectively. 

Table 1. The seven MS3 systems and the 31 MS3 point 
groups, expressed as three-dimensional colourless or 

black-and-white groups 

A prime (') added to a symmetry operation stands for simul- 
taneous reversal of the sign of x4. The systems table contains: 
numbers according to FJ (Fast & Janssen, 1968) and to WBN 
(Wondratschek, Btilow& NeubiJser, 1971); name as given by 
WBN; three-dimensional system of the average structure; 
k:s which do not vanish because of symmetry. The vector b4 
is directed along the unique axis in system III (a2) and in the 
systems V, VI, VII, (a3). In system II it is perpendicular to the 
unique axis (a2), while in system IV it corresponds to the third 
place of the symbols in the point-group table. 

System number Name System of 
FJ WBN (WBN) average structure ks -~ 0 
I 1 Hexaclinic Triclinic kl, k2, k3 
II 2 Triclinic Monoclinic kl, ks 
III 3 Diclinic Monoclinic k2 
IV 4 Monoclinic Orthorhombic k3 
V 9 Hexagonal 

monoclinic Hexagonal k3 
VI 8 Rhombohedral 

monoclinic Trigonal k3 
VII 7 Tetragonal 

monoclinic Tetragonal k3 

The following MS3-point-group symbols are identical with the 
point groups of the corresponding average structures, except 
for the primes ('), if any. Each point group is preceded by its 
FJ system number. 

I 1 VI 3 III 2 VII 4 V 6  
I 1' VI 3' III m' VII 4' V~" 
II 2' VI 32' III 2/m" VII 4/m" V 6/m' 
II m VI 3m IV mm2 VII 4 r a m  V6mm 
II 2"/m VI 3'm IV m2'm" VII ;~'2'm V~'2"m 

IV 2'2'2 VII 42"2' V 62'2" 
IV mmm" VII 4/m" mm V 6/m'mm 
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9. MSa space groups 

The papers just mentioned also give details of Bravais 
lattices and of arithmetic classes (better known to 
crystallographers as the corresponding symmorphic 
space groups) of which they list a total of 76 for the 
above 30 point groups. The uniqueness of a4 yields a 
considerable further differentiation, both in lattice 
types and in space groups. 

Centring of a triclinic lattice in the point group 
generated by (15), for instance, can be performed by 
adding translations 

(2~200) or (0½0½). (17) 

In the context of four-dimensional symmetry groups, 
these two (and many other) types of centring are equiv- 
alent, just as A, C and I types of centring are equiv- 
alent in monoclinic lattices in R3. For  MS space 
groups, however, the shifts (17) cannot be regarded as 
equivalent since a~ and a~ have to be interchanged in 
order to transform the ensuing space groups into each 
other. 

Similar arguments hold for translation components 
of space-group operations such as a glide added to the 
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mirror hyperplane (15). It is not the purpose of the 
present paper to enumerate all MSa space groups. By 
way of illustration we shall, however, give the com- 
plete list for the pseudo-symmetry groups of plane 
modulated structures. 

10. The MS2 space groups 

The operations of pseudo-symmetry in plane modulated 
structures are 3 x 3 matrices of type (16), but with Q = 
+ 1. This can be shown exactly as in § 8. The ensuing 
point groups are those of the three-dimensional tri- 
clinic system and of the monoclinic system, five in all. 
Together, these groups yield 23 MS2 space groups, cf. 
Table 2 and Fig. 6.* 

M S 2  

system 
Triclinie 

Table 2. The two MS2 systems, the f ive MS2 point groups 
and the 23 M S  2 space groups 

Each space group is given by the symbol of the corresponding 
three-dimensional symmetry, with a and e perpendicular to the 
binary axis or in the mirror plane, if any, and c as the unit 
vector e3 of the extra (third) dimension. The groups in the last 
two columns are pairwise equivalent as normal space groups, 
but different as MS~ space groups. 

MSz point group 
Plane system Two- Three- 

of average struct k~-~ 0 dimensional dimensional 
Oblique kt, k2 1 1 

2' T 
m'llb 2 

Orthogonal k~ mlla m 
ram" 2/ rn 

Monoclinic 

MS~ point group 
1 P1 
~" PT 
2 P2, P2t 
m Pm 

2/m P2/m 
P2~/m 

M S 2  space group 

A2 C2 
Pa Pc 
Am Cm 
Aa Cc 
P2/a P2/c 
P2,/m P2,/c 
A 2/m C2/m 
A 2/a C2/c 

T P l" F : " l  : "F I - " F ' I  'l 
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,Z_I,~'.. I_a_LL}-L.J"' '--;-"" - G ;  , . *  . . . . . . .  q . . ,  

C ~  A ~  

Fig. 6. Points in a general position in displacively modulated 
structures, illustrating some of the MS2 space groups listed 
in Table 2. Note the difference between Pa and Pc, which 
are equivalent as three-dimensional space groups. For P1 
and PT, k~=0.194, k2=0"252; for the others, kt=0"382. 

11. Modulated structures and superstructures 

A modulated structure can approximately be described 
as a superstructure by substituting rational numbers for 
the irrational k~ (or ki's) in (2).I The question then 
arises whether such a description can account adequate- 
ly for the pseudo-symmetry and pseudo-translations of 
the modulated structure. 

The answer is that the superstructure has a wider 
scope with regard to pseudo-translations, but a nat- 

* Programming, design and photography of Figs. 6 and 7 
(oscilloscope displays of computer output) are due to Ir H. 
Overeijnder. 

t Physical properties and symmetry of such superstructures 
have recently been treated by Aizu (1973) for the case of harmo- 
nic displacive modulation of a structure with space group 
Pnam. 

A C 30A - 7* 
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rower range of symmetry groups. Looking at equation 
(5) in order to find the change in x4 when going from a 
given atom in Ra to a pseudo-translation-equivalent 
atom (i.e. with integers added to x~, Xz and x3), we 
observe that if the k~ are rational numbers, x+ can 
change by multiples of a certain fraction only. This 
means that 0' [or f ,(x4) in (7), or u~(z) in (9)] need no 
longer be given as a continuous function of x4. Instead, 
it suffices to give its value at a finite number of x4 
values, separated by rational intervals. Thereby the 
continuity of the strings (which is the fundamental 
reason for the uniqueness of al) is lost. 

Successive values of the functionsf, or u~ can now be 
chosen without even a semblance of continuity. In this 
respect, one might say that superstructures offer wider 
possibilities than modulated structures. On the other 
hand, the range of available space groups is consider- 
ably smaller than that of MS3 space groups. This is 
clearly illustrated by the case of plane modulated struc- 
tures, cf. Table 2. Consider, for instance, a C-centered 
MSz space group. Since it occurs in the orthogonal 
system, there is just one non-zero k~, say k~. In an ap- 
proximative superstructure, k~ will be replaced by a 
fraction v/it. Now the C centring of the MS group may 
reappear in the superstructure as a centred net (c,). 
This requires that the centring translation (2~0) or one 
of its equivalents (q~ + ½, q2 + ½, qa) lies in Rz. Substitu- 
tion in (5) yields: 

(v/it) (q, +½)=q3 

(here the extra dimension is the third, not the fourth). 
Since the q, are integers, one finds the condition v= 
even for C -+ c,. 

The same reasoning yields the condition 2 = even for 
A -~ c~. Similarly, one finds that glide planes c or a in 
the MS2 group can lead to glide lines g in the super- 
structure. Here the conditions for a glide component 
to lie in R 2 a re  it=even for c -+  g; v=even for a--~ g. 
Accordingly, each symbol of the MS2 group can be 
made to reappear in the superstructure by a judicious 
choice of it and v. The difference between A and C, or 
a and c, however, is lost. Moreover, MS2 groups like 
Cc cannot be retrieved at all, because the parity con- 
ditions are contradictory (2 and v cannot both be even), 
cf. Fig. 7. 

Analogous situations occur when three-dimensional 
modulated structures are approximated by superstruc- 
tures. The latter's space groups, again, are often 
ambiguous and/or incomplete portrayals ot the actual 
pseudo-symmetry. 

Conversely, MS groups could be helpful in describing 
certain features of superstructures not apparent from 
their space group. 

12. Discussion 

The present extension of the symmetry concept may 
appear sterile in view of the small number of satellite 
patterns discovered so far. Yet it has already been 

applied successfully in order to explain special extinc- 
tions occuring in the diffraction pattern of NaaCO3 (de 
Wolff & van Aalst, 1972), which belongs to MS3 point 
group 2'/m in system II (cf. Table 1). For KaMoO4, the 
threefold b4 vector (van den Berg, Tuinstra and War- 
czewski, 1972) has recently been shown to be a result 
of twinning (Tuinstra & van Eldik, 1973). The actual 
modulated structure is not hexagonal; it belongs to 
system IV. For these and other compounds now under 
investigation, structure analysis would be next to im- 
possible without the use of pseudo-symmetry groups. 
The number of examples is small indeed. However, 
there may exist many others yet unknown, seeing that 
some occur in a very narrow temperature interval, 
such as 163-164½°C for the modulated phase of NaNO2 
(Hoshino & Motegi, 1967). 

From a physical point of view, the static structure 
models proposed in this paper may seem unconvincing. 
However, one may also regard the artificial quantity t 
from § 5 as time (as suggested to the author by Professor 
Janner), which makes a; the time axis. Thereby the 
displacive modulation phenomenon becomes a wave 
very similar to a phonon, and each string-like atom in 
R+ becomes the trajectory of an actual atom in space- 
time. In this concept, pseudo-translations and 
pseudo-symmetry operations are actual equivalence 
relations between atoms, cf. Janner (1972). Experiments 
are under way now to assess the existence of such a 
wave, the dynamic character of which cannot be ex- 
pected to be observable by the usual methods of X-ray 
diffraction. 

In this respect it should be remarked that thermal 
motion has expressly been disregarded in §§5 and 6. 
Work in progress on Na2CO3 has shown that thermal 
motion can be accounted for - at least in first approxi- 
mation - by a Debye-Waller factor of the usual form. 
The fact that satellites usually vanish for rather small 
values of h4 (Na2COa is an exception with some visible 
satellites up to h4 = 5) probably has nothing to do with 
thermal motion. It can be explained just by assuming a 

glide : ~ glide : =~ 
%-* - , r , - - - ,  ~"-v- . " l r , ' -  "~ . . . . . . . . . . .  [ ._<.-L .~ ;~ .-:: :" " ; '  "~" ..r' . ; . . ~  
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a Aa k1=2/5 "Cc k ,=1 /4  

, o- , , ' ,  . - 1  , ~ ' - ' ; , ~ ' "  r .  " 7  i 

i "  t , l , ,  " , ,  , t , 

Aa k, = 114 Cc k, = 2/5 

Fig. 7. Superstructures in two dimensions, obtained from MS2 
space groups Cc and Aa for k t=¼ and for k l = { .  These 
structures have either a centred net (lower figures) or a glide 
line (upper figures), but never the two togethei. 
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smooth nature of the modulation functions f~(x4) or 
u~(r) from § 5. As stated earlier, the continuity of these 
functions is an essential feature of modulated struc- 
tures. 

The author is greatly indebted to Dr Tuinstra (Delft) 
and to Professor Janner and Dr Janssen (Nijmegen) for 
reading and most helpfully criticising the manuscript. 
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The Symmetry of the Spin-Density Patterson Function 
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Generalized space groups are defined to describe the symmetry of a spin-density Patterson function due 
to the spin-group (generalized magnetic group) symmetry of a spin arrangement. The information on 
spin arrangements obtainable from the generalized space-group symmetry of a spin-density Patterson 
function is discussed. It is shown that one cannot infer from the symmetry of the spin-density Patterson 
function the characteristic spin-group symmetry of a spiral spin arrangement, and an alternate method of 
doing so is given. 

1. Introduction 

The Spin-Density Patterson Function, abbreviated by 
SDPF, is defined as the Fourier transform of the 
intensity of unpolarized neutrons elastically scattered 
from a magnetic crystal (Wilkinson, 1968, 1973). This 
function has been used in determining the spin ar- 
rangements of Mn2P (Yessik, 1968) and vivianite 
(Forsyth, Johnson, & Wilkinson, 1970). Wilkinson & 
Lisher (1973) have discussed the symmetry properties 
of the SDPF due to the magnetic-group symmetry 
of the spin arrangement and the information on spin 
arrangements obtainable from the SDPF. They have 
shown that for multi-domain crystals one may be 
unable to determine the orientation of the spins from 
the SDPF. 

Spin symmetry groups have been defined to describe 
the symmetry of spin arrangements in magnetic 
crystals (Litvin, 1973; Litvin & Opechowski, 1974). 
The theory of spin symmetry groups is briefly reviewed 
in § 2. In § 3 we determine the symmetry of the SDPF 
due to the spin symmetry group of a spin arrangement. 
We show that space groups are inadequate to describe 
these symmetries of the SDPF and define a general- 

ization of the space groups to do so. We then discuss 
the information on spin arrangements obtainable from 
the generalized space-group symmetry of the SDPF. 
In 94 we discuss the information on spiral spin arrange- 
ments obtainable from the SDPF of single-domain 
magnetic crystals. We show that one cannot infer 
from the symmetry of the SDPF the characteristic 
spin symmetry of a spiral spin arrangement, and, as 
in the case of multi-domain crystals, one is unable 
to determine from [the SDPF the orientation of the 
spins. An alterrmtive method is given of determining 
the characteristic spin symmetry of a spiral spin 
arrangement from the SDPF. In § 5 we discuss the 
SDPF of multi-domain crystals and show that in 
general no symmetry information, neither magnetic 
space-group nor spin-group symmetry, on the spin 
arrangement can be inferred from the symmetry of the 
multi-domain SDPF. 

2. Spin groups 

Generalized magnetic groups called spin groups have 
been defined to describe the symmetry of spin arrange- 
ments in magnetic crystals (Litvin, 1973; Litvin & 


